Khadijah M. Al-Zaydi ${ }^{\text {a }}$, Rita M. Borik ${ }^{\text {a }}$, and Mohamed H. Elnagdi ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Chemistry, Girl's College of Education, Jeddah, P.O. 50918 Jeddah 21533, Kingdom of Saudi Arabia<br>${ }^{\mathrm{b}}$ Department of Chemistry; Faculty of Science; Cairo University ,Giza-A. R. Egypt<br>E-mail: Alzaydi kh@yahoo.com; or Alzaydi kh@cyberia.net.sa Received October 28, 2006



Coupling the title compound $\mathbf{3}$ with arenediazonium salts affords the arylhydrazonochromones $\mathbf{6}$. The latter compounds react with hydrazine hydrate to yield novel pyrazoles $\mathbf{1 1}$.
J. Heterocyclic Chem., 44, 1187 (2007).

## INTRODUCTION

Enaminones are versatile reagents and their chemistry is receiving now considerable attention [1-5]. Some time ago, we reported that enaminones $\mathbf{1}$ couple with aromatic diazonium salts to yield 2-arylhydrazonopropanals [6]. This reaction has been extensively utilized for synthesis of polyfunctionally substituted heteroaromatics by us [712] and also other groups [13].


## RESULTS AND DISCUSSION

In conjunction of this work, we have investigated the coupling reaction of $\mathbf{3}$ with aromatic diazonium salts with the aim of obtaining 4 . The target molecules were not obtained instead cyclic N,O-acetals 6 were formed in good yields. We believe that the formed enazo compound 4 was initially cyclized into 5 that reacted with ethanol to yield the final isolable products 6 (Scheme 1 ).

Both ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra of the reaction products fit completely with the proposed structure. Thus ${ }^{13} \mathrm{C}$ NMR reveals two carbon signals at $\delta=15.4$ and 64.4 ppm for the ether moiety. The $\mathrm{sp}^{3}(\mathrm{C}-2)$ appears at $\delta=98.2 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}$

NMR spectrum shows the ether triplet and quartet at $\delta=1.0$ and 3.8 ppm and a singlet at $\delta=5.9 \mathrm{ppm}$ for $(\mathrm{H}-2)$ in the chromone ring. The $\mathrm{D}_{2} \mathrm{O}$-exhangable signal at $\delta=14.1 \mathrm{ppm}$ is attributed to a NH proton which is hydrogen-bonded to a carbonyl group. We considered it possible, however, that 7 can exist in the enol azo form. To confirm with certainty the exact structure of $\mathbf{6 a - c}$, an X-ray crystal structure determination of $\mathbf{6 a}$ was carried out [14]. It confirmed the existence of the hydrazono-chromone form (Figure 1). Some bond lengths and angles are given in Table 1.


It can thus be stated that typical for an $\mathrm{sp}^{3}$ (C-5) bond lengths with (O-2) and (CH) are 1.43 and $1.49 \AA$ respectively. The distance C16-O4 (1.23 $\AA$ ) is typical for a $\mathrm{C}=\mathrm{O}$ bond. However, the arylhydrazone bond lengths (C11-N6) and N6-N9 are little shorter than N-N bond lengths. This may be a result of the presence of an intramolecular hydrogen bond N9-H-O4


Figure 1. Solid state structure of compound 6a (ellipsoid of thermal represent a $90 \%$ probability).

The reaction of 6 with hydrazine hydrate afforded products that may be formulated as pyrazoles $\mathbf{1 0}, \mathbf{1 1}$ or cinnolines 12 (Scheme 2).

Table 1
Selected bond lengths and bond angles of $\mathbf{6 a}$.

| Bond | Bond <br> length (A) | Bond | Bond angle $\left({ }^{\circ}\right)$ |
| :--- | :---: | :--- | :---: |
| O2-C5 | 1.43 | C5-O2C14 | 116.1 |
| O2-C14 | 1.37 | C5-O3-C14 | 113.4 |
| O3-C5 | 1.39 | O2-C5-O3 | 109.7 |
| O3-C13 | 1.43 | O2-C5-C11 | 112.7 |
| O4-C16 | 1.23 | N9-N6-C11 | 118.0 |
| C5-C11 | 1.49 | N6-N9-C8 | 120.0 |
| N6-N9 | 1.32 | C7-C8-N9 | 122.5 |
| N6-C11 | 1.31 |  |  |
| C11-C16 | 1.44 |  |  |
| N9-H0 | 0.96 |  |  |



The cinnoline structure was easily excluded because of the absence of an $\mathrm{NH}_{2}$ signal in the IR spectrum and of azomethine carbon and hydrogen in the NMR spectra.

The ${ }^{1} \mathrm{HNMR}$ spectrum indicated the pyrazole proton 5H as a doublet at $\delta=7.04 \mathrm{ppm}$, in support of structure 11. Although azo compounds usually prefer the hydrazone form, the aromaticity of the pyrazole ring tends to favor 11 over tautomer $\mathbf{1 0}$.

## EXPERIMENTAL

All melting points were measured on a Gallenkamp Electrothermal melting point apparatus and are uncorrected. The IR absorption spectra were measured on a Nicolet Magna 520 FT IR Spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated dimethylsulfoxide [ $\mathrm{D}_{6}$ ]-DMSO at 400 MHz on a Bruker DPX spectrometer using tetramethylsilane (TMS) as an internal reference; chemical shift are expressed as $\delta$ values. Mass spectra were performed on a Shimadzu GCMS-QP 1000 Ex mass spectrometer at 70 eV . Microwave irradiation was carried out using a commercial microwave oven (SGO 390 W ). Elemental analyses were carried out at the Microanalytical Center at Cairo University.
Crystallographic analysis. The crystals were mounted on a glass fiber. All mesurments were performed on an ENRAF NONIUS FR 590. The data were collected at a temperature of $20 \pm 1^{\circ} \mathrm{C}$ using the $\omega$ scanning technique to a maximum of a $27.12^{\circ}$. The structure was solved by direct method using SIR 92 and refined by full-matrix least squares [14]. Non hydrogen bond atoms were refined anisotropically. Hydrogen atoms were located geometrically and were refined isotropically. Full data can be obtained on request from the CCDC [14].
General Procedure for the Preparation of 6a-c [5]. A cold solution of aryldiazonium salt ( 0.1 mol ) was prepared by adding a solution of sodium nitrite ( 1.5 g in $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ ) to a cold solution of aryl amine $(0.1 \mathrm{~mol})$ in concentrated $\mathrm{HCl}(5 \mathrm{ml})$ with stirring as described earlier. The resulting solution of the aryldiazonium salt was then added to a cold solution of enaminones 3 in EtOH ( 50 mL ) containing sodium acetate ( 0.1 mol). The mixture was stirred at room temperature for 1 h and
the solid product so formed was collected by filtration and crystallized from ethanol.

3-[(4-Chlorophenyl)hydrazono]-2-ethoxychroman-4-one (6a). M.p. $120^{\circ} \mathrm{C}$; orange crystals from ethanol; yield $90 \%$; IR $v=$ 3220(NH), 3080 (CH Aromatic), 2946 (CH aliphatic), 1660 ( $\mathrm{C}=\mathrm{O}$ ) and $1607(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-DMSO): $\delta=1.07\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.03\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.95(\mathrm{~s}, 1 \mathrm{H}$, CH ), 7.18-7.52 (m, 8H, Ar-H) and 13.75 (s, $1 \mathrm{H}, \mathrm{NH}$ ) ppm; ${ }^{13} \mathrm{C}-$ NMR ( $\left.100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): \delta=15.44\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 64.19$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 100.88(\mathrm{CH}), 117.44,119.21,122.46,123.30$, $127.14,128.38,129.1639,129.88,137.18,141.69$ (aromatic carbons), $156.48(C=\mathrm{N}-\mathrm{N})$, and $177.46(C=O) \mathrm{ppm}$; MS (EI, $70 \mathrm{eV}): m / z(\%)=330\left[\mathrm{M}^{+}\right] .-\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3}$ (330.77): calcd. C 61.73; H 4.57, N 8.47; found: C 61.32; H 4.12, N 8.07.

3-[(2-Cyanophenyl)hydrazono]-2-ethoxy-chroman-one (6b). M.p. $154^{\circ} \mathrm{C}$; Dark orange crystals from ethanol; yield $90 \%$; IR $v$ $=3200(\mathrm{NH}), 3081(\mathrm{CH}$ Aromatic), $2944(\mathrm{CH}$ aliphatic), 2221 $(\mathrm{CN}), 1651(\mathrm{C}=\mathrm{O})$ and $1605(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, [D $\mathrm{D}_{6}$ ]-DMSO): $\delta=1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.82\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 5.98 (s, 1H, CH), 7.20-8.75 (m, 8H, Ar-H) and 14.10 (s, 1H, NH) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-DMSO $): ~ \delta=15.40\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $64.41\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 98.23(\mathrm{CH}), 116.18(\mathrm{CN}), 100.42,119.37$, $122.20,123.54,124.47,127.52,131.68,133.68,135.43$, 137.919, 145.05, 163.20 (aromatic carbons), $156.77(C=\mathrm{N}-\mathrm{N})$, and $178.62(C=O) \mathrm{ppm}$; MS $(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=321()\left[\mathrm{M}^{+}\right]$. $-\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (321.33): calcd. C 67.28; H 4.71, N 13.08; found: C 67.68; H 4.31, N 13.44 .

2-Ethoxy-3-[(4-nitro-phenyl)-hydrazono]-chroman-one (6c). M.p. $90^{\circ} \mathrm{C}$; orange crystals from ethanol; yield $92 \%$; IR $v=$ 3200(NH), 3100 (CH Aromatic), 2950 (CH aliphatic), 1665 $(\mathrm{C}=\mathrm{O})$ and $1607(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-DMSO): $\delta=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 4.34\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.99(\mathrm{~s}, 1 \mathrm{H}$, CH ), 7.21-8.27 (m, 8H, Ar-H) and 13.59 (brs, $1 \mathrm{H}, \mathrm{NH}$ ) ppm; ${ }^{13} \mathrm{C}$-NMR ( $100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=15.43\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $64.40\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 100.81(\mathrm{CH}), 119.39,122.33,123.50,126.14$, 127.37, 131.79, 137.81, 143.15, 148.29, 164.33 (aromatic carbons), $156.78(C=\mathrm{N}-\mathrm{N})$, and $178.0031(C=\mathrm{O}) \mathrm{ppm}$; MS (EI, $70 \mathrm{eV}): m / z(\%)=341\left[\mathrm{M}^{+}\right] .-\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}(341.32)$ :calcd. C 59.82; H 4.43, N 12.31; found: C, 59.42; H 4.01, N 12.72 .

General Procedure for the Preparation of 11a,b: Method $\boldsymbol{A}$ : A mixture of compound $\mathbf{3 a}, \mathbf{b}(0.10 \mathrm{~mol})$ and hydrazine monohydrate $(0.12 \mathrm{~mol})$ were refluxed in ethanol $(30 \mathrm{ml})$ for 2 $h$, then left to cool to room temperature and the solid was collected and crystallized from ethanol.

Method B: Compound 3a,b ( 0.10 mol ) and hydrazine monohydrate $(0.12 \mathrm{~mol})$, were placed in the microwave oven and irradiated at 390 W for 2 min ., then left to cool to room temperature and the solid was collected and crystallized from ethanol.

2-[4-(4-Chlorophenylazo)-1H-pyrazol-3-yl]-phenol (11a). M.p. $118^{\circ} \mathrm{C}$; dark yellow crystals from ethanol; yield $78 \%$ (Method A), $96 \%$ (Method B); IR $v=3400$ (OH), $3220(\mathrm{NH})$, 3080 (CH Aromatic) and $1657(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, [D $\mathrm{D}_{6}$ ]-DMSO): $\delta=5.21$ (s, $1 \mathrm{H}, \mathrm{OH}$ ), 7.70 (d, $1 \mathrm{H}, \mathrm{H}-5$ pyrazole), 6.97-8.07 (m, 8H, Ar-H) and $12.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): ~ \delta=104.22(\mathrm{C}-\mathrm{N}=\mathrm{N}), 134.10(\mathrm{C}-5$ pyrazole), 152.00 (C-3 pyrazole), 116.41, 122.46, 123.36, $127.14,128.39,129.16,129.88,137.18,141.69,155.88$ (aromatic carbons) and $155.88(C-\mathrm{OH}) \mathrm{ppm}$; MS (EI, 70 eV ): $\mathrm{m} / \mathrm{z}$ $(\%)=298\left[\mathrm{M}^{+}\right]-\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ (298.73): calcd C 60.31; H 3.71, N 18.76; found: C 60.71; H 3.30, N 18.32 .

2-[3-(2-Hydroxyphenyl)-1H-pyrazol-4-ylazo]benzonitrile (11b). M.p. $142^{\circ} \mathrm{C}$; light orange crystals from ethanol; yield $75 \%$ (Method A), $98 \%$ ( Method B) ; IR v = 3400 (OH), $3200(\mathrm{NH}), 3080(\mathrm{CH}$ Aromatic), 2218(CN), and 1651 (C=N) $\mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}$ ): $\delta=5.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $7.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-5$ pyrazole), 6.99-8.04 (m, 8H, Ar-H) and $12.11(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$ ) ppm; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz},\left[\mathrm{D}_{6}\right]\right.$-DMSO): $\delta=108.2$ (C$\mathrm{N}=\mathrm{N}$ ), 134.16 (C-5 pyrazole), 152.20 (C-3 pyrazole), 116.12 (CN), 100.40, 119.38, 122.20, 123.55, 124.48, 127.44, 131.66, 133.70, 135.43, 137.919, 145.05, 156.22 (aromatic carbons) and $156.22(C-O H)$ ppm; MS $(E I, 70 \mathrm{eV}): m / z(\%)=289\left[\mathrm{M}^{+}\right]$. $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}$ (289.29): calcd. C 66.43; H 3.83, N 24.21; found: C 66.02; H 3.42, N 24.61 .

## REFERENCES

[1] Elassar, A. A; El-khair, A. A. Tetrahedron. 2003, 59, 8463.
[2] P.Langer, Angew. Chem. Ins. Ed., 2000, 39, 3049.
[3] Davis, K. M.; Carpenter.B. K. J. Org. Chem. 1996, 61, 4617.
[4] .Stanvnik, J. Heterocycl. Chem. 1999, 36, 1581.
[5] Al-Zaydi, K. M. Molecules. 2003, 8, 541.
[6] Al-Zaydi, K. M.; Hafez, E. A.; Elnagdi, M. H. J. Chem. Res. 2000, (S) 4, (M) 510.
[7] Al-Zaydi, K. M. J. Saudi Chem. Soc. 2002, 6, 477.
[8] Al-Zaydi, K. M.; Borik, R. M.; Elnagdi, M. H. Molecules. 2004, 9, 910.
[9] Bulow, C.; Spengler, W. Chem. Ber. 1925, 58, 1375.
[10] El-Sakka, T. A. J. Chem. Res. 1996, (S), 434.
[11] Al-Omran, F.; Abdel-Khalik, M. M.; Abuel-Khair, A.; Elnagdi, M. H. Synthesis, 1997, 91.
[12] Behbehani, H.; Abdel-Khalik, M. M.; Elnagdi, M. H. OPPI. 1999, 31, 551.
[13] agamy, S. M. J. Chem. Res. 2001, (S), 349; (M) 901.
[14] Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary puplications nos. CCDC 282473 . These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from theCCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

